CS 91R: The Computational Image

Assignment 2: Filtering

DUE February 12th at 11:55 PM

1 Part One: Implementation

As part of a p5 sketch, implement the following filters using convolution. Each filter should be written as a function that takes a p5.Image and returns a new p5.Image. Use your grayscale conversion from last lab. I'll do some demos in the beginning of lab so be there on time!

1.1 Blur Two Ways (using the box and gaussian kernels)

1.2 Horizontal Sobel

The resulting values may be negative, so either add an offset or use the absolute value.

$$\begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

1.3 Vertical Sobel

The resulting values may be negative, so either add an offset or use the absolute value.

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

1.4 Sobel

Combine the magnitude of the gradient from the horizontal and vertical sobel: sqrt(sq(x) + sq(y)).

2 Part Two: Evaluation

Reimplement your blur filter as two one-dimensional filters. Compare the computation time spent with the standard k^2 filter and the 2k implementation that exploits the linear separability of the filter. You can use millis() to calculate the run-time of the filtering operation. Write about it in refelection.md.

3 Part Three: Have fun!

Use your filters to display the webcam's images in a creative manner. Some possible ideas:

- use a sequence of filters in some creative way;
- filter RGB images;
- use the blur idea on the hue (or S or V) in another color space;
- use different filters in different parts of the image;
- use a sequence of filters overlayed using an alpha layer on the original image.
- combine multiple images by adding/averaging/compositing them:
 - nimg.pixels[i] = 0.5 * img1.pixels[i] + 0.5 * img2.pixels[i]

4 Learning Objectives

- filter images using convolution;
- implement blurring using linear separability;
- evaluate the run-time of similar algorithms.