
CS 91R: The Computational Image

Assignment 1: Dithering

DUE February 5th at 11:59 PM

In this lab, we will learn how to capture images from the webcam, work with various color spaces, and
perform thresholding and dithering of images.

I’ll show live demos of each component at the start of lab (so be on time!).

Our first task is to create a simple half-tone filter for our webcam. Study the following two sketches (the
reference page is worthy of book-marking):

1. Video Pixels
2. createCapture

Create a sketch that performs the half-tone effect on a live webcam image. You can call capture.size(width,

height) to make sure the sketch canvas and webcam are the same size. Experiment with other shapes than
circles, for example, rectangles. For the rest of this lab, we won’t rely on processing drawing primitives, but
instead manipulate images pixel by pixel.

NOTE: A common mistake is mismatching the size of the canvas and webcam images. Moreover, make
sure you aren’t using pixels when you mean capture.pixels; the canvas itself has an array of pixels, in
addition to individual images.

1 RGB->Gray

hsluv.org

The next step will be to convert our color images to gray scale. Although we can use Processing’s filter

function, we will not be using that in this lab (or hardly ever). Instead you will convert each pixel
from RGB to gray scale. In other words, we will go from a color space with 256 x 256 x 256 unique colors
to one with simply 256 separate gray-scale levels.

CS 91R (Spring 2024) — Assignment 1: Dithering 1 of 3

http://www.easyrgb.com/en/math.php
https://en.wikipedia.org/wiki/Halftone
https://p5js.org/reference/
https://p5js.org/examples/dom-video-pixels.html
https://p5js.org/reference/#/p5/createCapture
https://p5js.org/reference/#/p5/pixels
https://www.hsluv.org/comparison/
https://p5js.org/reference/#/p5/filter


There are a variety of ways to convert from RGB to gray scale, and we’ll talk about many during class, but
for this assignment, compare two approaches:

1. Average: just find the mean of the red, green and blue channels.

function rgb2avg(r, g, b){

return (r + g + b) / 3;

}

2. Weighted Average: the average of the three channels, but count green more heavily.

gray = 0.3 · red + 0.59 · green + 0.11 · blue

2 Thresholding: Gray->Binary

The next step is to further quantize the image from 256 possible gray values down to just 2 binary colors:
black (0,0,0) & white (255, 255, 255). Use an arbitrary threshold (e.g., 127) for now, we’ll cover a better
way to do this in a few weeks.

3 Dithering: Gray->Binary

Our final step turns our images into black and white in a more sophisticated manner using Floyd-Steinberg
dithering.

4 Challenge Problems

1. Convert to gray scale taking into account gamma compression and luminance.
2. Perform the dithering on the full RGB image rather than only the gray-scale version.

CS 91R (Spring 2024) — Assignment 1: Dithering 2 of 3

https://en.wikipedia.org/wiki/Floyd%E2%80%93Steinberg_dithering
https://en.wikipedia.org/wiki/Floyd%E2%80%93Steinberg_dithering
https://en.wikipedia.org/wiki/Grayscale#Colorimetric_(perceptual_luminance-preserving)_conversion_to_grayscale


5 Learning Objectives

• learn how to grab images from the webcam
• process pixels with p5.js

• understand different color spaces
• threshold images
• implement dithering

6 Deliverables

1. Commit the javascript sketch.js to the repo. Your sketch should use key to toggle between the
different ways of viewing your webcam image. I suggest writing your different filters as separate
functions that take a p5.Image and return another.

• ‘h’ — half-tone
• ‘g’ — gray scale (rgb average)
• ‘w’ — gray scale (weighted average)
• ‘t’ — threshold
• ‘d’ — dither

2. Write a small reflection (as a markdown document named reflection.md) about what you were able
to accomplish in this lab. Don’t forget the collaboration statement!

CS 91R (Spring 2024) — Assignment 1: Dithering 3 of 3

https://p5js.org/learn/color.html
https://p5js.org/reference/#/p5/key
https://p5js.org/reference/#/p5.Image

	RGB->Gray
	Thresholding: Gray->Binary
	Dithering: Gray->Binary
	Challenge Problems
	Learning Objectives
	Deliverables

