CS 45: Operating Systems

CLab 9: threads

Write your answers in README.md. Create a COLLAB.md file to keep track of any outside resources you might
use. Be sure to push to the repo after class (even if you are not done).

1

Race Conditions

Use the threads-intro directory (in ostep-homework/) to see if you understand how race conditions arise.

0.
1.

2

Either chmod +x x68.py or run python3 x86.py.

Let’s examine a simple program, loop.s. First, just read and understand it. Then, run it with these
arguments (./x86.py -t 1 -p loop.s -i 100 -R dx) This specifies a single thread, an interrupt
every 100 instructions, and tracing of register %dx. What will %dx be during the run? Use the -c flag
to check your answers; the answers, on the left, show the value of the register (or memory value) after
the instruction on the right has run.

. Same code, different flags: (./x86.py -p loop.s -t 2 -i 100 -a dx=3,dx=3 -R dx) This specifies

two threads, and initializes each %dx to 3. What values will %dx see? Run with -c to check. Does the
presence of multiple threads affect your calculations? Is there a race in this code?

. Run this: ./x86.py -p loop.s -t 2 -i 3 -r -R dx -a dx=3,dx=3 This makes the interrupt inter-

val small/random; use different seeds (-s) to see different interleavings. Does the interrupt frequency
change anything?

. Now, a different program, looping-race-nolock.s, which accesses a shared variable located at address

2000; we’ll call this variable value. Run it with a single thread to confirm your understanding: ./x86.py
-p looping-race-nolock.s -t 1 -M 2000 What is value (i.e., at memory address 2000) throughout
the run? Use -c to check.

. Run with multiple iterations/threads: ./x86.py -p looping-race-nolock.s -t 2 -a bx=3 -M

2000 Why does each thread loop three times? What is final value of value?

. Run with random interrupt intervals: ./x86.py -p looping-race-nolock.s -t 2 -M 2000 -i 4

-r -s 0 with different seeds (-s 1, -s 2, etc.) Can you tell by looking at the thread interleaving what
the final value of value will be? Does the timing of the interrupt matter? Where can it safely occur?
Where not? In other words, where is the critical section exactly?

. Now examine fixed interrupt intervals: ./x86.py -p looping-race-nolock.s -a bx=1 -t 2 -M

2000 -i 1 What will the final value of the shared variable value be? What about when you change -i
2, -i 3, etc.? For which interrupt intervals does the program give the “correct” answer?

. Run the same for more loops (e.g., set —a bx=100). What interrupt intervals (-i) lead to a correct

outcome? Which intervals are surprising?

pthreads

Use the threads-api directory (in ostep-homework/) to see if you understand how race conditions occur
and can be detected using helgrind.

9.

10.

First build main-race.c. Examine the code so you can see the (hopefully obvious) data race in the
code. Now run helgrind (by typing valgrind --tool=helgrind main-race) to see how it reports the
race. Does it point to the right lines of code? What other information does it give to you?

What happens when you remove one of the offending lines of code? Now add a lock around one of the
updates to the shared variable, and then around both. What does helgrind report in each of these
cases?

CS 45 (Fall 2025) — CLab 9: threads 1of 2


https://github.com/remzi-arpacidusseau/ostep-homework/tree/master/threads-intro
https://github.com/remzi-arpacidusseau/ostep-homework/tree/master/threads-api

11.

12.
13.

14.

15.
16.

17.

Now let’s look at main-deadlock.c. Examine the code. This code has a problem known as deadlock
(which we discuss in much more depth in a forthcoming chapter). Can you see what problem it might
have?

Now run helgrind on this code. What does helgrind report?

Now run helgrind onmain-deadlock-global.c. Examine the code; does it have the same
problem that main-deadlock.c has? Should helgrind be reporting the same error? What
does this tell you about tools likehelgrind‘?

Let’s next look at main-signal.c. This code uses a variable (done) to signal that the child is done and
that the parent can now continue. Why is this code inefficient? (what does the parent end up spend-
ing its time doing, particularly if the child thread takes a long time to complete?)

Now run helgrind on this program. What does it report? Is the code correct?

Now look at a slightly modified version of the code, which is found in main-signal-cv.c. This version
uses a condition variable to do the signaling (and associated lock). Why is this code preferred to the
previous version? Is it correctness, or performance, or both?

Once again run helgrind on main-signal-cv. Does it report any errors?

CS 45 (Fall 2025) — CLab 9: threads 2 of 2



	Race Conditions
	pthreads

