
CS 45: Operating Systems

Lab 3: malloc

DUE October 9th 19th at 11:59 PM

In this lab we take a break from using xv6 and learn how malloc and free manage the heap. The Free-Space
Management chapter from the OSTEP book is useful for this lab (this lab originates from the authors). Write
your answers in README.md. Create a COLLAB.md file to keep track of any outside resources you might use.

1 Managing the Heap
Memory allocators have two distinct tasks. First, the memory allocator asks the operating system to expand
the heap portion of the process’s address space by calling either sbrk or mmap. Second, the memory allocator
doles out this memory to the calling process. This involves managing a free list of memory and finding a
contiguous chunk of memory that is large enough for the user’s request; when the user later frees memory, it
is added back to this list.

This memory allocator is usually provided as part of a standard library and is not part of the OS. To be
clear, the memory allocator operates entirely within the virtual address space of a single process and knows
nothing about which physical pages have been allocated to this process or the mapping from logical addresses
to physical addresses; that part is handled by the operating system.

NOTE: Because we are building our own heap, valgrind isn’t of much use this week.

2 mmap

When implementing this basic functionality in your project, we have a few guidelines. First, when requesting
memory from the OS, you must use mmap() (which is easier to use than sbrk()). Second, although a real
memory allocator requests more memory from the OS whenever it can’t satisfy a request from the user, your
memory allocator must call mmap() only one time (when it is first initialized).

In this project, you will use mmap to map zero’d pages (i.e., allocate new pages) into the address space of
the calling process. Note there are a number of different ways that you can call mmap to achieve this same
goal; we give one example here:

// open the /dev/zero device
int fd = open("/dev/zero", O_RDWR);

// size_of_region (in bytes) needs to be evenly divisible by the page size
void *ptr = mmap(NULL, size_of_region, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
if (ptr == MAP_FAILED) { perror("mmap"); exit(1); }

// close the device (don't worry, mapping should be unaffected)
close(fd);
return 0;

3 Details
For this project, you will be implementing several different routines as part of a shared library. We have
provided the prototypes for your library functions in the file mem.h; you should include this header file in
your code to ensure that you are adhering to the specification exactly. You should not change mem.h in
any way!

• int mem_init(int size_of_region): mem_init is called one time by a process using your routines.
size_of_region is the number of bytes that you should request from the OS using mmap().

CS 45 (Fall 2025) — Lab 3: malloc 1 of 3

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-freespace.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-freespace.pdf
https://pages.cs.wisc.edu/~remzi/

Note that you may need to round up this amount so that you request memory in units of the page size
(see the man pages for getpagesize()). Note also that you need to use this allocated memory for your
own data structures as well; that is, your infrastructure for tracking the mapping from addresses to
memory objects has to be placed in this region as well. You are not allowed to malloc(), or any other
related function, in any of your routines! Similarly, you should not allocate global arrays. However,
you may allocate a few global variables (e.g., a pointer to the head of your free list.)

Return 0 on a success (when call to mmap is successful). Otherwise, return -1 and set m_error to
E_BAD_ARGS. Cases where mem_init should return a failure: mem_init is called more than once;
size_of_region is less than or equal to 0.

• void *mem_alloc(int size, int style): mem_alloc is similar to the library function malloc().
mem_alloc takes as input the size in bytes of the object to be allocated and returns a pointer to the
start of that object. The function returns NULL if there is not enough contiguous free space within
size_of_region allocated by mem_init to satisfy this request (and sets m_error to E_NO_SPACE).

The style parameter determines how to look through the list for a free space. It can be set to M_BESTFIT
(BF) for the best-fit policy, M_WORSTFIT (WF) for worst-fit, and M_FIRSTFIT (FF) for first-fit. BF
simply looks through your free list and finds the first free space that is smallest in size (but still can
hold the requested amount) and returns the requested size (the first part of the chunk) to the user,
keeping the rest of the chunk in its free list; WF looks for the largest chunk and allocates the requested
space out of that; FF looks for the first chunk that fits and returns the requested space out of that.

For performance reasons, mem_alloc() should return 8-byte aligned chunks of memory. For example if
a user allocates 1 byte of memory, your mem_alloc() implementation should return 8 bytes of memory
so that the next free block will be 8-byte alligned too. To figure out whether you return 8-byte aligned
pointers, you could print the pointer this way printf("%p", ptr). The last digit should be a multiple
of 8 (i.e. 0 or 8).

• int mem_free(void *ptr): mem_free() frees the memory object that ptr points to. Just like with
the standard free(), if ptr is NULL, then no operation is performed. The function returns 0 on success,
and -1 otherwise.

Coalescing: mem_free() should make sure to coalesce free space. Coalescing rejoins neighboring freed
blocks into one bigger free chunk, thus ensuring that big chunks remain free for subsequent calls to
mem_alloc().

• void mem_dump(): This is just a debugging routine for your own use. Have it print the regions of free
memory to the screen.

4 Your malloc Design
The textbook suggests one way to structure your free lists, but there are many options! The book’s approach
is sometimes known as an explicit free list, only keeping track of the free blocks.

struct header_t{
int size;
int magic;

};

struct node_t {
int size;
struct node_t *next;

};

Another approach known as an implicit free list, keeps track of all the blocks and has a flag to see if the
block is free.

CS 45 (Fall 2025) — Lab 3: malloc 2 of 3

struct header_t{
int size;
struct header_t *next;
int free;
int magic;

};

What are the benefits and costs of the two approaches? Before you start coding think about different
alternatives and write about your design here.

5 Your malloc Evaluation Plan
What will your tests looks like? How can you evaluate the performnace of your allocators? Think and
write about those here before starting any coding.

6 Library
You must provide these routines in a shared library named libmem.so. Placing the routines in a shared
library instead of a simple object file makes it easier for other programmers to link with your code. There are
further advantages to shared (dynamic) libraries over static libraries. When you link with a static library,
the code for the entire library is merged with your object code to create your executable; if you link to
many static libraries, your executable will be enormous. However, when you link to a shared library, the
library’s code is not merged with your program’s object code; instead, a small amount of stub code is inserted
into your object code and the stub code finds and invokes the library code when you execute the program.
Therefore, shared libraries have two advantages: they lead to smaller executables and they enable users to
use the most recent version of the library at run-time. To create a shared library named libmem.so, use the
following commands (assuming your library code is in a single file mem.c):

$ gcc -c -fpic mem.c -Wall -Werror
$ gcc -shared -o libmem.so mem.o

To link with this library, you simply specify the base name of the library with -lmem and the path so that
the linker can find the library -L.

$ gcc -o myprogram mymain.c -Wall -Werror -L. -lmem

Of course, these commands should be placed in a Makefile. Before you run myprogram, you will need to set
the environment variable, LD_LIBRARY_PATH, so that the system can find your library at run-time. Assuming
you always run myprogram from this same directory, you can use the command:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:.
./myprogram

7 Evaluation
Create a test program that compares the performance of the three different kinds of allocation.

• Write about how your free-list implementation works.
• Write about why you are confident your free-list implementation works correctly.
• Write about how the three approaches compare in terms of performance.

8 Optional
Still can’t get enough malloc. Use mremap to ask for space as you need to expand the heap. One nice thing
with this approach is we don’t need to call mem_init but rather ask for more memory lazily.

CS 45 (Fall 2025) — Lab 3: malloc 3 of 3

https://man7.org/linux/man-pages/man2/mremap.2.html

	Managing the Heap
	mmap
	Details
	Your malloc Design
	Your malloc Evaluation Plan
	Library
	Evaluation
	Optional

