
CS 45: Operating Systems

CLab 10: Disks

DUE by next class

Write your answers in README.md. Create a COLLAB.md file to keep track of any outside resources you might
use. Be sure to push to the repo after class (even if you are not done).

1 Disks
Use disk.py to familiarize you with how a modern hard drive works. It has a lot of different options , and
unlike most of the other simulations, has a graphical (-G) animator to show you exactly what happens when
the disk is in action. See the disk-README.md for details.

1. Compute the seek, rotation, and transfer times for the following sets of requests: -a 0, -a 6, -a 30,
-a 7,30,8, and finally -a 10,11,12,13.

$ python3 disk.py -G -a 0

2. Do the same requests above, but change the seek rate to different values: -S 2, -S 4, -S 8, -S 10, -S
40, -S 0.1. How do the times change?

3. Do the same requests above, but change the rotation rate: -R 0.1, -R 0.5, -R 0.01. How do the
times change?

4. FIFO is not always best, e.g., with the request stream -a 7,30,8, what or der should the requests be
processed in? Run the shortest seek-time first (SSTF) scheduler (-p SSTF) on this workload; how long
should it take (seek, rotation, transfer) for each request to be served?

5. Now use the shortest access-time first (SATF) scheduler (-p SATF). Does it make any difference for
-a 7,30,8 workload? Find a set of requests where SATF outperforms SSTF; more generally, when is
SATF better than SSTF?

6. Specify a disk with different density per zone, e.g., -z 10,20,30, which specifies the angular difference
between blocks on the outer, middle, and inner tracks. Run some random requests (e.g., -a -1 -A
5,-1,0, which specifies that random requests should be used via the -a -1 flag and that five requests
ranging from 0 to the max be generated), and compute the seek, rotation, and transfer times. Use
different random seeds. What is the bandwidth (in sectors per unit time) on the outer, middle, and
inner tracks?

2 RAID
1. Use the simulator to perform some basic RAID mapping tests. Run with different levels (0, 1, 4, 5) and

see if you can figure out the mappings of a set of requests. For RAID-5, see if you can figure out the
difference between left-symmetric and left-asymmetric layouts. Use some different random seeds to
generate different problems than above.

$ python3 raid.py -R 20 -n 5 -L 0 -c

2. Do the same as the first problem, but this time vary the chunk size with -C. How does chunk size
change the mappings?

3. Do the same as above, but use the -r flag to reverse the nature of each problem.

4. Now use the reverse flag but increase the size of each request with the -S flag. Try specifying sizes of
8k, 12k, and 16k, while varying the RAID level. What happens to the underlying I/O pattern when the
size of the request increases? Make sure to try this with the sequential workload too (-W sequential);
for what request sizes are RAID-4 and RAID-5 much more I/O efficient?

CS 45 (Fall 2025) — CLab 10: Disks 1 of 2



5. Use the timing mode of the simulator (-t) to estimate the perfor- mance of 100 random reads to the
RAID, while varying the RAID levels, using 4 disks.

CS 45 (Fall 2025) — CLab 10: Disks 2 of 2


	Disks
	RAID

