
CMSC 317: The Computational Image

Assignment 5: Geometry in 2D

Part One: Homogeneous Coordinates

Create a processing sketch that allows the user to drop points interactively using the mouse. You should
compute the lines (not just the line segments) connecting those points and display them. For this sketch
you should use homogeneous coordinates to represent both the points and lines. Remember the point
p = [x, y]T is represented by the homogeneous coordinates p = [x, y, 1]T and l = [a, b, c]T represents the line
0 = ax+ by + c. You can find the line passing through two points by taking their cross product: p1 × p2 or
p1.cross(p2) using Processing’s PVector class. And the intersection point of two lines can be found using
the cross product: l1 × l2 or l1.cross(l2). The following Processing function draws a line represented in
homogeneous coordinates (why are there two cases?):

void plotLine(PVector v) {

if (abs(v.x) < abs(v.y)) {

line(0, v.z/-v.y, width, (v.x*width + v.z)/-v.y);

}

else {

line(v.z/-v.x, 0, (v.y * height + v.z)/-v.x, height);

}

}

Part Two: 2D Transformations

As part of another Processing sketch, implement the following 2D transformations. Each transformation
should take a PVector v and return the transformed point Mv. Consider representing your matrices as
collections of row PVectors and write a general multiply function.

Translation

1 0 tx
0 1 ty
0 0 1



Euclidean Transform

cos θ − sin θ tx
sin θ cos θ ty

0 0 1



Similarity Transform (or Scaled Euclidean Transform)

s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1


Use these transform functions to map the pixels in your sketch in an interesting way. For example, consider
modifying Shiffman’s Pointillism sketch to render the webcam’s pixels in a rotated and scaled manner.

CMSC 317: Geometry in 2D 1 of 1


