CMSC 143: Introduction to Object-Oriented Programming with Robots Lab 6: Fruitful Functions (Midterm Review)

Due March 11, 2010

Submit a copy of your python program (cmsc143_lab6_NAME.py) on moodle. Your program should have your name, email, and the date at the top of the file as a comment.

Learning Objectives

- Use functions that return values. ○ Write functions that return values.
\circ Compose functions ○ Write test cases for your functions.

Battery Capacity

Your robot uses 6 AA batteries. Each AA battery can range between $0-1.5 \mathrm{~V}$, so the robot can range between $0-9 \mathrm{~V}$. Write a function batteryLeft() that returns the battery capacity as a percentage between 0-100. getBattery () returns the battery voltage as a floating point between 0.0-9.0.

Temperature

Write six functions that convert between the different temperature scales. Use only the equations below, and you should reuse your functions whenever possible to limit redundant code. You might want to draw the function black-box diagrams (input/output) before you start programming.

Using the temperature conversion functions write a function tableTemps () that prints a table of: absolute zero $\left(-459.67^{\circ} \mathrm{F}\right)$, the freezing point of water $\left(32^{\circ} \mathrm{F}\right)$ the boiling point of water $\left(212^{\circ} \mathrm{F}\right)$ in celsius, kelvin, rankine, and delisle.

```
celsiusToFarenheit(degreesInCelsius) farenheitToCelsius(degreesinFarenheit)
farenheitToKelvin(degreesInKelvin) kelvinToFarenheit(degreesInKelvin)
farenheitToRankine(degreesInFarenheit) farenheitToDelisle(degreesInFarenheit)
```

	from Celsius	to Celsius					
Farenheit	$F=C \times \frac{9}{5}+32$	$C=(F-32) \times \frac{5}{9}$					
Kelvin	$K=C+273.15$	$C=K-273.15$			Rankine Kelvin	$R=K \times \frac{9}{5}$	to Kelvin
:---	:---	:---	:---	:---			

	from Delisle	to Delisle
Rankine	$R=671.67-D \times \frac{6}{5}$	$D=(R-671.67) \times \frac{5}{6}$

Unit tests

Write two functions: testCelsius(degrees) that takes a temperature and returns the result of the expression: celsiustoFarenheit(farenheitToCelsius(x)) and another testKelvin(degrees) that takes a temperature and returns the result of the expression: kelvinToFarenheit (farenheitToKelvin(x)). What are the results for the following function calls?

```
testKelvin(-10) testCelsius(2)
testKelvin(83.323) testCelsius(43.5)
```

