CMSC 143: Introduction to Object-Oriented Programming with Robots Lab 6: Fruitful Functions (Midterm Review) Due March 11, 2010

Submit a copy of your python program (cmsc143_lab6_NAME.py) on moodle. Your program should have your name, email, and the date at the top of the file as a comment.

Learning Objectives

- \circ Use functions that return values. $~\circ$ Write functions that return values.
- Compose functions Write test cases for your functions.

Battery Capacity

Your robot uses 6 AA batteries. Each AA battery can range between 0-1.5V, so the robot can range between 0-9V. Write a function batteryLeft() that returns the battery capacity as a percentage between 0-100. getBattery() returns the battery voltage as a floating point between 0.0-9.0.

Temperature

Write six functions that convert between the different temperature scales. Use **only the equations below**, and you should **reuse your functions whenever possible** to limit redundant code. You might want to draw the function black-box diagrams (input/output) before you start programming.

Using the temperature conversion functions write a function tableTemps() that prints a table of: absolute zero $(-459.67^{\circ}F)$, the freezing point of water $(32^{\circ}F)$ the boiling point of water $(212^{\circ}F)$ in celsius, kelvin, rankine, and delisle.

```
celsiusToFarenheit(degreesInCelsius)
farenheitToKelvin(degreesInKelvin)
farenheitToRankine(degreesInFarenheit)
```

farenheitToCelsius(degreesinFarenheit)
kelvinToFarenheit(degreesInKelvin)
farenheitToDelisle(degreesInFarenheit)

	from Celsius	to Celsius			
		to censius		from Kelvin	to Kelvin
Farenheit	$F = C \times \frac{9}{5} + 32$	$C = (F - 32) \times \frac{5}{9}$	Donking	$D = K \times 9$	$K = D \times 5$
Kelvin	K = C + 273.15	C = K - 273.15	nankine	$n = n \times \frac{1}{5}$	$\Lambda = \Lambda \times \frac{1}{9}$

	from Delisle	to Delisle
Rankine	$R = 671.67 - D \times \frac{6}{5}$	$D = (R - 671.67) \times \frac{5}{6}$

Unit tests

Write two functions: testCelsius(degrees) that takes a temperature and returns the result of the expression: celsiustoFarenheit(farenheitToCelsius(x)) and another testKelvin(degrees) that takes a temperature and returns the result of the expression: kelvinToFarenheit(farenheitToKelvin(x)). What are the results for the following function calls?

testKelvin(-10) testCelsius(2)
testKelvin(83.323) testCelsius(43.5)

CMSC 143 (Spring 2010): Lab 6