BARD CMSC 328: Embedded Operating Systems

bmalloc: Dynamic Memory Allocation in C

In this lab, we will practice using pointers, memory management, and structures in the C
programming language. And what better way to understand memory management, than to build
yourown malloc and free, let's call them bmalloc and bfree. (Go Raptors!)

malloc and free are used to dynamically allocate memory in our C programs. As explained in
lecture, a memory footprint of a process can be broken into a variety of segments (e.g. code,
data, bss, heap, and stack). The heap is managed dynamically by keeping track of unallocated
memory areas using something called a free list. Most of this lab will be managing this free list.
Of course, you should not use the built in malloc and free functions.

Steps
1. Read and understand the malloc manual page (man malloc)and Ch. 7 of Kerrisk.
2. Understand the simple binary tree driver program included.
Sfor i in {1..100}; do echo SRANDOM; done | ./simplebtree
3. Write bmemetest.c to test bmalloc and bfree. (for example, a linked list program)
4. Understand the block structure used to maintain the free list:
a. the size of the block
b. whether the block is free or being used
c. the pointer to the next block in the list
d. the pointer to the previous block in the list
Create a preliminary bmalloc that can allocate one block.
Use the utility function print freelist to display the current state of the free list.
Modify bmalloc () so thatit can allocate multiple blocks.
Write bfree.
Make bfree merge adjacent free regions.

© e NGO

Testing

1. Try running the simplebtree with your implementation of bmalloc and bfree.
2. Write your own test program to assure your implementations are correct. How would you
measure the performance of your functions?

Deliverables

bmem.c your implementation of the two functions: bmalloc () & bfree ()
bmemtest.c a test for your implementation (add this to the Makefile)

Extra

e Isthe freeinthe block t necessary? How could you avoid that extra book-keeping?
e Implementbcalloc()and brealloc ()
e Usethe brk () and sbrk () system calls rather than a large char buffer.

bmem.h
/***
* Keith O'Hara <kohara@bard.edu>
* Sep 2013
* CMSC328: Embedded Operating Systems

*

* bmalloc: Dynamic Memory Management

*/

#ifndef BMEM H
#define BMEM H

#include <stdlib.h>
#define MAX HEAP STZE (2 << 24)

void* bmalloc(size t size);
void bfree(void* ptr);

fendif /* BMEM H */
bmem.c (the start of it anyway)

#include "bmem.h"
#include <stdio.h>

#define align4 (x) (((((x) = 1) >> 2) << 2) + 4)*

typedef struct block {
size t size;
struct block* next;
struct block* prev;
int free;

tblock t;

static char heap[MAX HEAP SIZE];
static block t* freelist = 0;

' This macro increases the the size X so that it is divisible by 4.

The Free List - An Example

address type of contents data
char * buffer --> 4004 size 60
4008 next 4064
4012 prev 0
4016 free 0
4020 data
4024
4064 size 140
next 4204
prev 4004
free 0
data XXXX
XXXX
4204 size 1048376
next 0
prev 4064
free 1
XXXX

bmalloc (sizeof (char) * 44)
bmalloc (sizeof (int) * 31)

