
CMSC 327 Distributed Systems

Project 4: Group Communication

Due November 15, 2010

In this project you will implement causally ordered reliable multicast. The Python program provided im-
plements both unordered and totally-ordered multicast. The totally ordered multicast procedure uses the
algorithm outlined in the textbook relying on Lamport clocks and a hold-back queue. You should use the
vector-clock based algorithm we discussed in class and described in the textbook to implement causally
ordered multicast.

Learning Objectives

◦ Explore Group Communication ◦ Implement Causally-Ordered Reliable Multicast

Design

Describe how you have to modify the totally-ordered multicast implementation to provide causally-ordered
multicast. Explain in prose how the vector clocks are updated and how message delivery is decided. Fur-
thermore, design a small program that highlights the difference between different types of multicast.

Implementation

First, modify the current program to use vector clocks rather than Lamport clocks. Once the current
functions use vector clocks correctly, implement causally ordered multicast. You can assume that the group
is static, i.e. you do not have to handle failures or nodes leaving or joining the group. You should also
implement a small program highlighting the differences between ordered and unordered multicast, e.g. a
simple text-based chat program is provided.

Evaluation

You should compare unordered, totally-ordered, and causally ordered multicast. You should verify that the
messages are being delivered in the correct order. You should evaluate your program with a group size
greater than two and involving more than one machine. If you have time, investigate the cost of totally or
causally ordering the messages in terms of overall message throughput.

Deliverables

Submit a zip file with the following directory structure:

cmsc327 proj4 LASTNAME FIRSTNAME/
Group.py implements the causally ordered multicast
README simple text file explaining how to run your code
results.pdf your evaluation

CMSC 327 (Fall 2010): Project 4 1 of 6

Resources

The following program implements unordered and totally ordered multicast. The Python documentation for
heapq1, socket2, and pickle3 are useful for understanding the code.

a list of the members of the group (IP, PORT)
group_members = [("127.0.0.1", 9000), ("127.0.0.1", 9001), ("127.0.0.1", 9003)]

class Group:

def __init__(self, hosts, id):
self.group = hosts

this processe id: [0, len(group) - 1]
self.id = id

self.host, self.port = self.group[id]

our lamport clock
self.clock = 0
self.clocklock = threading.Lock()

sockets to communicate to the group (outgoing)
self.snd_sockets = []
a lock to coordinate use of the outgoing scokets
self.sndlock = threading.Lock()

the hold back queue; used to deliver messages in order
self.hold_back_q = []
self.qlock = threading.Lock()

a dictionary to keep track of message acknowledgements
self.acks = {}

process incoming messages in a separate thread
self.server = IncomingConnections(self)
self.server.start()

def connect(self):
’’’ Connect to the other members of the group’’’

make a list of the hosts we need to connect to
left_to_connect = self.group[:]

while len(left_to_connect) > 0:
try:

grab the next group member to connect to
host = left_to_connect[0]
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

1http://docs.python.org/library/heapq.html
2http://docs.python.org/library/socket.html
3http://docs.python.org/library/pickle.html

CMSC 327 (Fall 2010): Project 4 2 of 6

http://docs.python.org/library/heapq.html
http://docs.python.org/library/socket.html
http://docs.python.org/library/pickle.html

sock.connect(host)

create a file from the socket; useful for reading/writing pickled objects
self.snd_sockets.append(sock.makefile())

we have connected so we can delete it from our list
del left_to_connect[0]

except:
print "could not connect to", host

give some time for others to connect
time.sleep(.5)

def multicastMessage(self, msg, order = Message.TOTAL):
’’’ Send a multicast message to the group’’’

self.clocklock.acquire()
self.clock += 1
self.clocklock.release()

msg.clock = self.clock
msg.sender_id = self.id
msg.order = order

self.sndlock.acquire()
for s in self.snd_sockets:

send the msg; write the pickled object to the socket file
pickle.dump(msg, s)
flush file to make sure message is sent now
s.flush()

self.sndlock.release()

def receiveObj(self):
’’’ Receive a Message object ’’’

message = None
self.qlock.acquire()
if len(self.hold_back_q) > 0:

grab the earliest message
priority, m = heapq.heappop(self.hold_back_q)

make sure the message is ready to be delivered
if m.ready:

message = m
push it back on the heap, if it is not ready to be delivered
else:

heapq.heappush(self.hold_back_q, (priority, m))
self.qlock.release()
return message

CMSC 327 (Fall 2010): Project 4 3 of 6

def processMessageTotal(self, msg):

’’’
Process this message according to totally ordered delivery.
The messages and their acknowledgements are stored in the
’ack’ dictionary. The messages are hashed by the sender id
and the sender’s timestamp. Once a message has been acked by
the entire group, it is ready for delivery. All ready
messages are placed in a hold-back queue ordered by the
sender’s timestamp.

’’’

assert(msg.order == Message.TOTAL)

lamport update
self.clocklock.acquire()
self.clock = max(msg.clock, self.clock) + 1
self.clocklock.release()

a mesage is identified by the original sender’s id, it’s clock value
hash = (msg.orig_id, msg.orig_clock)

#if we have seen this message (or an ack from it) before
if hash in self.acks:

#if this is an ack, add to the end
if msg.ack:

self.acks[hash].append(msg)
#if this is the original message, put it in the front
else:

self.acks[hash].insert(0, msg)

#first time we have seen this message, add it to our list
else:

self.acks[hash] = [msg]

self.qlock.acquire()

this is the original message, push it in our hold-back queue
if not msg.ack:

the priority is the time-stamp of the message, and then the sender id
heapq.heappush(self.hold_back_q, ((msg.orig_clock, msg.orig_id), msg))

got all the acks, mark this message to be delivered
if len(self.acks[hash]) == len(self.group):

grab the orignal message stored at the first spot, set it to ready
self.acks[hash][0].ready = True
delete this message from our dictionary of acks
del self.acks[hash]

make a copy of the message

CMSC 327 (Fall 2010): Project 4 4 of 6

m = copy.copy(msg)
self.qlock.release()

#if this message was a regular message (not an ack), ack it
if not m.ack and m.sender_id != self.id:

m.ack = True
self.multicastMessage(m)

def processMessageUnordered(self, msg):

assert(msg.order == Message.UNORDERED)

lamport update
self.clocklock.acquire()
self.clock = max(msg.clock, self.clock) + 1
self.clocklock.release()

deliver this message immediately
self.qlock.acquire()
msg.ready = True
heapq.heappush(self.hold_back_q, (-1, msg))
self.qlock.release()

class IncomingConnections(threading.Thread):
’’’ A server to listen to incoming connections and receive messages’’’

def __init__(self, group):
threading.Thread.__init__(self)
self.group = group
sockets for incoming data
self.rcv_sockets = []

def run(self):
print "Listening for connections on ", self.group.host, self.group.port
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind((self.group.host, self.group.port))
s.listen(50)

while len(self.rcv_sockets) < len(self.group.group):
conn, addr = s.accept()
print "New connection:", addr
reads will timeout after 1 ms (useful when reading multiple sockets at once)
conn.settimeout(.001)
self.rcv_sockets.append(conn.makefile())

while True:
go through the sockets and read an object from the socket
for sf in self.rcv_sockets:

try:
obj = pickle.load(sf)

CMSC 327 (Fall 2010): Project 4 5 of 6

if isinstance(obj, Message):
if obj.order == Message.UNORDERED:

self.group.processMessageUnordered(obj)
elif obj.order == Message.TOTAL:

self.group.processMessageTotal(obj)
except socket.error:

socket has no data, go on to the next
continue

if __name__ == "__main__":

id = 0
if len(sys.argv) > 1:

id = int(sys.argv[1])

try:
g = Group(group_members, id)
g.connect()

while True:
m = raw_input(">>> ")
if len(m.strip()) > 0:

g.multicastMessage(Message(id, m, g.clock), Message.TOTAL)

v = g.receiveObj()
while v:

print v.sender_id, "> ", v.message
v = g.receiveObj()

except (KeyboardInterrupt, EOFError):
sys.exit(0)

CMSC 327 (Fall 2010): Project 4 6 of 6

