CMSC 327 Distributed Systems
Project 4: Group Communication Clarification
Due November 19, 2010

The book is a bit confusing about how to implement causally ordered multicast using vector clocks.
is much more precise: The relevant portions are from pages 280 & 281:

original paper by Birman!

4.3 Vector Time
Our delivery protocol is based on a type of logical clock called a vector clock.
The vector time protocol maintains sufficient information to represent —
precisely.

A vector time for a process p,, denoted VT'(p,), is a vector of length n
(where n = | P|), indexed by process-id.

(1) When p, starts execution, VT'(p,) is initialized to zeros.
(2) For each event send(m) at p,, VT(p,)i] is incremented by 1.

(3) Each message multicast by process p, is timestamped with the incre-
mented value of VT'(p,).

(4) When process p; delivers a message m from p, containing VT'(m), p,
modifies its vector clock in the following manner:

vihel - n:VT(p)[k] = max(VT(p,)[k], VT (m)[k]).

That is, the vector timestamp assigned to a message m counts the number of
messages, on a per-sender basis, that causally precede m.
Rules for comparing vector timestamps are

(1) VT, = VT, iff vi: VT,[i] = VT,Li]
2) VT, < VT, if VT, = VT, and 3i: VT,[i] < VT,li]

It can be shown that given messages m and m’, m — m’ iff VI'(m) < VT'(m'):
vector timestamps represent causality precisely.

and
The protocol is as follows:

(1) Before sending m, process p, increments VT'(p,)i] and timestamps m.

(2) On reception of message m sent by p, and timestamped with VT(m),
process p, # p; delays delivery of m until:

VI(m)[k] = VT(p)[k] +1 ifk=i
" VT(m)[k] = VT(p,)[#] otherwise

Process p, need not delay messages received from itself. Delayed mes-
sages are maintained on a queue, the CBCAST delay gqueue. This queue is
sorted by vector time, with concurrent messages ordered by time of
receipt (however, the queue order will not be used until later in the
paper).

(3) When a message m is delivered, VT'(p,) is updated in accordance with
the vector time protocol from Section 4.3.

vk:1

A

Two points of clarification:

The

1. Update the vector clocks *after* delivering the message to the application (i.e. not when the message

is initially received, but after the two conditions have been met).

2. You don’t increment the vector clock upon receipt or delivery, only upon send.

1 «Lightweight causal and atomic group multicast.” by Schiper, Birman, and Stephenson.

http://portal.acm.org/citation.cfm?id=128742

CMSC 327 (Fall 2010): Project 4

lofl

http://portal.acm.org/citation.cfm?id=128742

