
CMSC 317: The Computational Image

Assignment 3: Geometry in 2D

Part One: Homogeneous Coordinates

Create a sketch that let’s users drop points interactively using the mouse. You should compute the lines (not
just the line segments) connecting those points and display them. For this sketch you should use homogeneous
coordinates to represent both the points and lines. Remember the point p = [x, y]T is represented by the
homogeneous coordinates p = [x, y, 1]T and l = [a, b, c]T represents the line 0 = ax+ by+ c. You can find the
line passing through two points by taking their cross product: p1×p2 or p1.cross(p2). And the intersection
point of two lines can be found using the cross product: l1 × l2 or l1.cross(l2). The following Processing
function draws a line represented in homogeneous coordinates (why are there two cases?):

void plotLine(PVector v) {

if (abs(v.x) < abs(v.y)) {

line(0, v.z/-v.y, width, (v.x*width + v.z)/-v.y);

}

else {

line(v.z/-v.x, 0, (v.y * height + v.z)/-v.x, height);

}

}

Part Two: 2D Transformations

As part of a (possibly separate) Processing sketch, implement the following 2D transformations. Each trans-
formation should take a PVector v and a Matrix M as input and return the transformed point Mv. Use
the JAMA1 matrix library for the matrix operations by adding the jama-102.jar file to your sketch.

Translation

1 0 tx
0 1 ty
0 0 1



Euclidean Transform

cos θ − sin θ tx
sin θ cos θ ty

0 0 1



Similarity Transform (or Scaled Euclidean Transform)

s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1



Affine Transform

a b tx
c d ty
0 0 1


Use these transform functions to map the pixels or lines in your sketch in an interesting way. For example,
consider modifying Shiffman’s Pointillism sketch to render the webcam’s pixels in a transformed manner.

1http://math.nist.gov/javanumerics/jama/

CMSC 317: Geometry in 2D 1 of 1

http://math.nist.gov/javanumerics/jama/

