CMSC 317: The Computational Image Assignment 2: Filtering

Part One

As part of a Processing sketch, you should implement the following filters (each written as a function that takes a PImage and returns a new PImage):

• Blur (using the box or gaussian blur)

					[1	4	6	4	1]
$\frac{1}{9}$	[1	1	1]	1	4	16	24	16	4
	1	1	1	$\frac{1}{250}$	6	24	36	24	6
	1	1	1	256	4	16	24	16	4
	-		_	$\frac{1}{256}$	1	4	6	4	1

• Horizontal Sobel (the resulting values may be negative, either add an offset or use the absolute value)

$$\frac{1}{8} \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

• Vertical Sobel (the resulting values may be negative, either add an offset or use the absolute value)

$$\frac{1}{8} \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

• Sobel (as the magnitude of the gradient from the horizontal and vertical sobel operators)

Part Two

Use your filters to display the webcam's images in a creative manner. Some possible ideas:

- Use a sequence of filters in some creative way
- Use different filters in different parts of the image
- Use a sequence of filters overlayed using an alpha layer on the original image

Part Three

Reimplement either the blur or sobel filters as two one-dimensional filters. Compare the computation time spent with the standard k^2 filter and the 2k implementation that exploits the linear separability of the filter.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$