CMSC 157: Object-Oriented Programming Workshop Assignment 1: Moire

Due by Class (1:30pm) September 5, 2016

This assignment serves as a warm-up for programming with Processing and Java. The goal is to create a program that creates varying digital moire images. Our approach is taken from Dewdney's 1976 "Computer Recreations" column in **Scientific American**.

Connett's Algorithm

Assuming x, y are the pixel coordinates, and s, t are scaling parameters that range from 0–1:

for all pixels in image do	Processing Tips	
$z \leftarrow s \cdot x^2 + t \cdot y^2 $	color(r,g,b)	Create a color with specific red, green, blue values (0–255)
~ _	color(g)	Create a color with a specific gray-scale value (0–255)
if z is even then paint pixel white	set(x,y,c)	Set the pixel at location (x, y) to a specific color
else paint pixel black	width, height	Variables that hold the width & height of the window
end if	х 🗓 у	Compute the remainder of dividing x by y
end for	int(x)	Create an Integer of ${\tt x}$ by truncating the fractional part

Challenges

Try and accomplish the following items:

- translate Connett's algorithm to Processing;
- render the whole image at once (i.e., not animated);
- vary scale parameters (s & t) using the mouse, either via random() function or mouseX/Y variables;
- save a screenshot (i.e., saveFrame) when a key is pressed;
- use more than two colors;
- use the entire screen (e.g. displayWidth/Height).

Learning Objectives

- \bullet Review Processing's graphics facilities.
- Review loops.

Processing Tips

A small Processing program to get you started:

```
int y = 0;
1
2
3 void setup() {
     size(800, 600);
4
     background(224);
5
6
   }
7
8
   void draw() {
9
     for (int x = 0; x < width; x++) {
10
       color c = color(y%255);
       set(x, y, c);
11
12
     }
13
     y = y + 1;
14 }
```

Deliverable

Submitting your assignment:

1. Put a comment at the top of your programs with your name, date assignment description, and collaboration statement.

```
/**
 * Name <bard email>
 * date
 * CMSC 157
 * Project 1: Moire (And any usage information)
 * I (worked alone | collaborated) on this assignment
 * [with (student | tutor) X]
 * [with assistance from (website link | book | student | tutor) Z].
 */
```

- 2. Bring a hardcopy of your program (i.e., the source code) to class.
- 3. Submit a zip file of your program via Moodle. The zip file should expand into a folder named cmsc157-project1-lastname-firstname with the Processing sketch inside of that folder.