
CMSC 143: Object-Oriented Programming with Robots

Lab 8: Motion Detection

Due October 27, 2016

This lab practices some of the methods that we have learned for analyzing images. In particular, we will create
a program that acts as a motion detector that could be used for security purposes. We will use a technique
called background subtraction to detect changes in a scene. Using gray scale images: takePicture(’gray’);
getGray(px); setGray(px, value) simplifies the task.

• frameDifference(background, image): Create a function that “subtracts” background from image.
Your function should iterate through every pixel in image and subtract the value of the corresponding
pixel in the background. This function should return a new image in which each pixel is the absolute
value of the difference between pixels of the two input images. Pixels that don’t change will be zero
(i.e., black) and pixels that have changed will be non-zero. Include examples images in your report.

background image second image result

• detectChanges(background, image, threshold): Create a function that is similar to frameDifference
but instead of the resulting image being the difference, we are going to only show the pixels in image

that have changed substantially. Specifically, those pixels that have changed by a value of threshold.
If the pixels have not changed, they should be set to black. Compare the results of three different
threshold values, which value works best for detecting changes?

background image second image result (foreground)

• Write countChanges so that it returns the number of foreground pixels (i.e., non-black pixels) in the
image.

• securityGuard(time): This function first takes a ’background’ image of what the scene initially looks
like (for instance, when you set the motion alarm). Then for time seconds, continually takes pictures
and passes them along with the background image to detectChanges . If there are substantial changes
in the image (i.e., many pixels have changed), save a picture of the intruder.

CMSC 143 (Fall 2016): Motion Detection Lab 1 of 2



Learning Objectives

• Analyze images

• Implement a background subtraction algorithm

• Empirically evaluate an algorithm

Deliverables

Submit an electronic copy of your lab using moodle. Your program should have your name, email, assignment
description, the date, and collaboration statement at the top of the file as a comment. Your submission should
be a zip file that expands to a folder with two files:

cmsc143-lab8-LASTNAME-FIRSTNAME/

lab8.py

lab8.pdf

EXTRA: ALPHA BLENDING

Along with “subtracting” images, as we did by frame differencing, we can also add them. We can combine
the pixels of two images by a weighted average. We weigh one image by a factor called α that ranges
from 0 − 1 and the other image by 1 − α. This results in a transparency effect and is often called alpha
blending. Create a new function called alphaBlend(image1, image2, alpha) that iterates through the
pixels of image1 and the corresponding pixels from image2. Then the red, green, and blue values of the
corresponding pixel of the new image is the weighted sum of those from image1 and image2.

Rnew = α×R1 + (1 − α) ×R2 (1)

Gnew = α×G1 + (1 − α) ×G2 (2)

Bnew = α×B1 + (1 − α) ×B2 (3)

CMSC 143 (Fall 2016): Motion Detection Lab 2 of 2


