
CMSC 143: Object-Oriented Programming with Robots

Lab 12: Predator-Prey Simulation

Due December 1, 2016

Predator-prey simulations are used to understand how populations of animals interact. In this lab’s agent-
based simulation, there will be two types of animals: Rabbits (prey) and Wolves (predators). Your task is
to program the individual animal behaviors. Both types of animals run around randomly and reproduce
with some probability. The wolves eat nearby rabbits, removing rabbits from the population. The wolves
gain energy from eating the rabbits, but will die if their energy drops to zero. The wolves are born with
some energy units and expend energy each timestep. Wolves are less likely to reproduce if their energy is low.

The Animal parent class and the World class are provided. Your first task is to implement the Rabbit

and Wolf child classes. You should not modify the World or Animal classes. Resist the urge to copy and
paste; use inheritance. Next, you should run experiments with your simulation. Gather data about how the
populations change as you vary one of the parameters: initial population size, speed, movement strategy,
reproduction rate. Use Window()1 to plot the data and include the graph along with a brief reflection in
your lab report. The display attribute can be used to disable drawing each animal, resulting in faster
simulations.

Learning Objectives

◦ Apply Object-Oriented Design ◦ Use Inheritance ◦ Create a Simulation

Deliverables

Submit an electronic copy of your lab using moodle. Your program should have your name, email, assignment
description, the date, and collaboration statement at the top of the file as a comment. Your submission should
be a zip file that expands to a folder with at least these two files:

cmsc143-lab12-LASTNAME-FIRSTNAME

lab12.py -- Your program (only adding Wolf and Rabbit)

lab12.pdf -- Your simulation results

1Either using savePicture(Picture(w), ’results.png’) or use the printscrn button on your keyboard to take a screenshot
of your window and then paste that into your report.

CMSC 143 (Fall 2016): Lab 12 1 of 4



from Graphics import ∗
import random

class World(object):

def init (self, nR, nW):
’’’ Create a simulated world with nR rabbits and nW wolves ’’’
self.display = True
self.nR = nR
self.nW = nW
self.animals = []

self.win = Window("simulation", 400, 400)
self.win.setBackground(Color("white"))

self.gwin = Window("population size", 1000, 300)

for i in range(nR):
r = Rabbit(self)

for i in range(nW):
w = Wolf(self)

def run(self):
’’’ run the simulated world ’’’
t = 0
while t < self.gwin.getWidth() and self.nR > 0 and self.nW > 0:

self.nR = 0
self.nW = 0
for a in self.animals[:]:

if a.alive:
a.takeAStep()
if isinstance(a, Rabbit):

self.nR += 1
elif isinstance(a, Wolf):

self.nW += 1
else:

self.animals.remove(a)

pr = Circle((t, self.gwin.getHeight() − self.nR), 1)
pr.color = Color("blue")
pr.draw(self.gwin)

pw = Circle((t, self.gwin.getHeight() − self.nW), 1)
pw.color = Color("red")
pw.draw(self.gwin)

t = t + 1

print ("Simulation Done")

def addAnimal(self, a):
self.animals.append(a)

CMSC 143 (Fall 2016): Lab 12 2 of 4



def nearbyAnimals(self, a):
’’’ find all the nearby animals within sensing range of a’’’
nearby = []
for o in self.animals:

if o.alive and a.distance(o) < a.SENSING RANGE and o != a:
nearby.append(o)

return nearby

def closestNeighbor(self, a, t):
’’’ find the closest animal to animal a of type t;

return None if no closest exists’’’
closestDistance = 100000000
neighbor = None
for o in self.nearbyAnimals(a):

if isinstance(o, t) and a.distance(o) < closestDistance:
neighbor = o
closestDistance = a.distance(o)

return neighbor

class Animal(object):
SIZE = 5
SENSING RANGE = 30

def init (self, world):
’’’ Create a new Animal’’’
self.world = world
self.alive = True
self.vx = 4
self.vy = 4
self.reproduction prob = 0.02
self.x = random.uniform(0, self.world.win.getWidth())
self.y = random.uniform(0, self.world.win.getHeight())
self.size = self.SIZE
self.world.addAnimal(self)
self.setAppearance()

def setAppearance(self):
self.appearance = Circle(Point(self.x, self.y), self.size)
if self.world.display:

self.appearance.draw(self.world.win)

def eat(self):
pass

def reproduce(self):
pass

def die(self):
’’’remove this animal from the population’’’
if self.world.display:

self.appearance.undraw()
self.alive = False

CMSC 143 (Fall 2016): Lab 12 3 of 4



def takeAStep(self):
’’’ move the animal for one timestep’’’
dx = random.uniform(−self.vx, self.vx)
dy = random.uniform(−self.vy, self.vy)
if self.insideWindow(dx, dy):

self.x = self.x + dx
self.y = self.y + dy
self.appearance.move(dx,dy)

def distance(self, other):
’’’ find the distance between myself and the other animal’’’
return ((self.x − other.x)∗∗2 + (self.y − other.y)∗∗2)∗∗0.5

def insideWindow(self, dx, dy):
’’’ check to see if moving animal by (dx, dy) keeps it in the window’’’
tx = self.x + dx
ty = self.y + dy
if self.size/2 < tx < self.world.win.getWidth() − self.size/2 and \
self.size/2 < ty < self.world.win.getHeight() − self.size/2:
return True

else:
return False

def str (self):
return "Animal at (%d, %d)" % (self.x, self.y)

def go():
random.seed(5)
w = World(60, 60)
w.run()

CMSC 143 (Fall 2016): Lab 12 4 of 4


