
CMSC 143: Object-Oriented Programming with Robots

Lab 6: Photobooth

Due March 26th

Submit an electronic copy of your lab using moodle. Your program should have your name, email, assignment
description, the date, and collaboration statement at the top of the file as a comment. Your submission should
be a zip file that expands to a folder with two files:

cmsc143-lab6-LASTNAME-FIRSTNAME/

lab6.py

test.jpg

Learning Objectives

◦ Manipulate Images. ◦ Understand Image Coordinate Systems ◦ Use Nested Loops.

Functions to be Implemented

You should implement the first five functions, and choose one of the functions 6–9. All your functions should
return a new image, i.e. they should not modify the original. Your functions should manipulate the pictures
at the pixel level using setPixel() or setColor(), not using the Window() methods.

Your file should look something like:

def mirror(image):

newImage = copyPicture(image)

...

return newImage

def test():

p = makePicture("test.jpg")

show(p, "original")

show(mirror(p), "mirrored")

show(flip(p), "flipped")

1. resize(image, factor) – Resize the image according to factor; a factor of 2 should make it twice as
big, a factor of 0.5 should make it half its original size.

CMSC 143 (Spring 2015): Lab 6 1 of 3



2. mirror(image) – Create a mirror image (reversed horizontally)

3. flip(image) – Create an upside-down image

4. photobooth(listOfImages) – Write a function that takes a list of images and creates a new image
with all the images appended vertically, like the photobooths of years past.

5. Create a program that uses your scribbler’s camera to create a photobooth. The scribbler should take
5 pictures, around 2 seconds apart. You might want to beep before taking the image, so your user can
smile or make a goofy face. Feel free to apply one of your special effect functions to the images. Then
use your photobooth() function to create one big image, and save it to a file.

CMSC 143 (Spring 2015): Lab 6 2 of 3



PICK ONE

6. nest(image) – Write a function that uses resize to nest an image inside of itself, recursively. (Al-
though, your function does not have to be recursive.)

7. blur(image, neighborhood size) – Blur the image by replacing each pixel with the average of itself
and its neighboring pixels. If there aren’t enough neighboring pixels for some pixel p (pixels on the
edges of the image), you should just use p instead of the missing neighbor.

8. sepia(image, sepiaAmount) – Write a function that applies a sepia effect, which raises the red
and green channels, and lowers the blue. In particular it adds 2 * sepiaAmount to the red, adds
sepiaAmount to green, and subtracts sepiaAmount from blue. 20 is a good value for sepiaAmount.

9. fairey(image) – Write a function that applies an effect similar to Shepard Fairey’s iconic Obama
“HOPE” poster. Each pixel is colored one of four colors depending upon the sum of its RGB values.
It assigns roughly equal intervals for each of the four colors.

RGB Sum Color
0 – 181 darkBlue (0, 51, 76)

182 – 363 red (217, 26, 33)
364 – 545 lightBlue (112, 150, 158)
545 – 765 yellow (252, 227, 166)

CMSC 143 (Spring 2015): Lab 6 3 of 3


