CMSC 143: Introduction to Object-Oriented Programming with Robots
Lab 4: Personalized gamepad ()
Due Februrary 26, 2015

The gamepad() function (from the lab #1) makes all the gamepad buttons do something interesting (e.g.,
move the robot, beep, speak, or take a picture). In this lab, you will create your own myGamepad(). You
can make the buttons do whatever you wish, for instance, report the battery voltage, save a picture to a
file, or play different musical notes. For moving the robot with the gamepad the move (translate, rotate)
function could be handy.

Be creative.

Lab Report

Submit an electronic copy of your lab using moodle. Your program should have your name, email, assignment
description, the date, and collaboration statement at the top of the file as a comment. Your submission should
be a zip file that expands to a folder with a single file:

cmsc143-1ab4-LASTNAME-FIRSTNAME/
lab4.py

Learning Objectives

o Create a personalized gamepad o Use conditionals
o Use while loops o Understand Flow-of-Execution

Some Gamepad Details

For the first part of the assignment, become familiar with getGamepad (); figure out how the different buttons
work and the order they are reported.

The getGamepad () function waits for a button to be pressed and then returns the status of the controller
(represented as something called a dictionary). If you ask for the *button’ entry you get a list of eight items:
[0, o, 1, 0, 0, 0, 0, 0] each item corresponding to one of the buttons. In this case, the third button
is pressed. Similarly, the *axis’ entry returns the status of the directional pad (as a list with two items):
[-0.99996, 0.0]. In this case, the x-axis of the directional pad is pressed left. To retrieve an item from a
list you can use the index operator. For example, if we have the result of getGamepad() in a variable named
status, then status[’button’] grabs a list representing the values of the buttons and status[’axis’]
grabs a list representing the values of the axes.

What are the differences between the directional pad on the left and the buttons on the right? Experiment
with the following code, explain in a comment what you find.

while True:

status = getGamepad()
print ("The entire status of the gamepad looks like", status)

CMSC 143 (Spring 2015): Lab 4 1 of 2



buttons = status[’button’]
print ("The buttons:", buttons)
print ("The first button reads", buttons[0])

axes = status[’axis’]
print ("The x-axis reads", axes[0], "and the y-axis reads", axes[1])

Another function named getGamepadNow () immediately returns the status of the gamepad without waiting
for a button press. However, this will read a button press over and over again, as long as the button is
pressed. This function is useful for driving the robot with the directional pad.

myGamepad()

Once you are comfortable with how getGamepad () and getGamepadNow () work you should implement your
own myGamepad() function. You can make the buttons do whatever you wish, for instance, increase or
decrease the beeping frequency, or report the light sensor values. Or maybe make pairs of buttons do some
action.

There are two requirements:

1. the north most button should stop your function (i.e. keepGoing = False);
2. use all of the other buttons.
Your program should start something like:

def myGamepad() :
>?> HOW TO USE MY GAMEPAD
up button: EXPLANATION
down button: EXPLANATION

keepGoing = True
while keepGoing:
status = getGamepad() # or status = getGamepadNow()

buttons = status[’button’]
axes = status[’axis’]

CMSC 143 (Spring 2015): Lab 4 2 of 2



