
CMSC 143: Introduction to Object-Oriented Programming with Robots

Lab 9: Operating Overloading

Due Monday, November 7, 2011

In this lab, we will flush out the Fraction we started in lecture. The Fraction class overloads specially named
methods allowing it to emulate numeric types.1. Your class should be properly documented (each class and
method should have a pydoc string).

Test Cases

Write a function test() that exercises the Fraction class. Before you add functionality you should write a
small test for it. This test function should give you confidence the operators are implemented correctly.

def test():

f = Fraction(2, 3)

g = Fraction(4, 8)

print("f: ", f)

print("g: ", g)

print ("f + g: ", f+g)

print ("f * g: ", f*g)

Arithmetic and Comparison Operators

Along with addition and multiplication your class should implement division (truediv) and subtraction
(sub). You should also implement the comparision function (cmp) which Python uses for the compar-
ison operations <, <=, >, >=, ==, !=. The comparision function returns -1, 0, 1 depending on whether
the object is less than, equal, or greater than the other object passed as a parameter. Next, implement
neg , a unary operator, which returns a negated version of the Fraction. Finally, you should implement
float which is used when a user converts your Fraction to a float object.

Mixed Arithmetic

Although now you can create arbitrary arithmetic expressions using fractions (e.g. (f + g)/(-h * i)),
expressions like Fraction(1, 2) * 2 fail since the Fraction class assumes other is a Fraction. Improve
those methods by checking to see if other is a Fraction, and if not, convert it to a Fraction. The
isinstance(object, Class) function returns True if the type of object is Class and False otherwise.

You can test for Fraction-ness: isinstance(other, Fraction) or int-ness: isinstance(other,int).

When Python comes upon a mixed expression like 2 * Fraction(1, 2) instead of calling mul Python
will call rmul because the Fraction is on the right side of the operator. Implement radd , rmul ,
rsub , and rtruediv . Why are radd and rmul different from rsub and rtruediv ?

Deliverables

cmsc143 lab9 LASTNAME FIRSTNAME.py – Your program.

Learning Objectives

◦ More Practice Creating Classes ◦ Overload Operators ◦ Write Test Cases

1http://docs.python.org/reference/datamodel.html#emulating-numeric-types

CMSC 143 (Fall 2011): Lab 9 1 of 2

http://docs.python.org/reference/datamodel.html#emulating-numeric-types

def gcd(a, b):

’’’ Euclid’s algorithm for greatest common denominator’’’

if b == 0:

return a

else:

return gcd(b, a % b)

class Fraction:

’’’ A user-defined fraction class for exact rational numbers ’’’

def __init__(self, num, denom):

’’’ Creates a new Fraction object num/denom’’’

self.num = num

self.denom = denom

self.reduce()

def __repr__(self):

’’’ returns string representation of our fraction’’’

return str(self.num) + "/" + str(self.denom)

def reduce(self):

’’’ converts our fractional representation into reduced form’’’

divisor = gcd(self.num, self.denom)

self.num = self.num // divisor

self.denom = self.denom // divisor

def __mul__(self, other):

’’’return a new fraction that is the result of multiplying (*) this fraction by other’’’

newnum = self.num * other.num

newdenom = self.denom * other.denom

return Fraction(newnum, newdenom)

def __add__(self, other):

’’’return a new fraction that is the result of adding (+) this fraction by other’’’

newnum = self.num * other.denom + self.denom*other.num

newdenom = self.denom * other.denom

return Fraction(newnum, newdenom)

def __truediv__(self, other):

pass

def __sub__(self, other):

pass

def __cmp__(self, other):

pass

def __neg__(self):

pass

def __float__(self):

pass

CMSC 143 (Fall 2011): Lab 9 2 of 2

