
CMSC 143: Introduction to Object-Oriented Programming with Robots

Lab 12: Postfix-Python

Due December 5, 2011

In this lab, we will create a new programming language for controlling our robots. The language will be
similar to Reverse Polish Notation (RPN)1. In reverse polish notation, rather than putting the math-
ematical operators between the operands (i.e. infix) we put them after the operands (i.e. prefix). For
example, 3 + 2 is represented by 3 2 + and (3 + 2) / 4 is represented by 3 2 + 4 /. Other than being
a little strange, this notation makes writing computer programs to evaluate these expressions simpler and
we don’t need parentheses. The programming languages Forth, Postscript, and Joy all use postfix notation.
Other languages, like Lisp, use prefix notation.

Below is an example of a small postfix-arithmetic interpreter (this particular program could benefit from
better error handling). We are using the pop() method for lists which grabs and deletes the last element of
the list. In fact, we are using the list as a specific data structure known as a stack. The stack is how we
pass values to and from functions. When using a stack, we treat the list like a stack of plates or papers; we
add and remove items from the end of the list. We are accessing the list in last-in-first-out order.

class Interpreter:

def __init__(self):

self.operators = {’display’: self.display, ’+’: self.add, ’-’: self.sub}

self.stack = []

def display(self):

v = self.stack.pop()

print (v)

def add(self):

v2 = float(self.stack.pop())

v1 = float(self.stack.pop())

self.stack.append(v1 + v2)

def sub(self):

v2 = float(self.stack.pop())

v1 = float(self.stack.pop())

self.stack.append(v1 - v2)

def interpret(self, expression):

for token in expression.split():

if token in self.operators:

operator = self.operators[token]

operator()

else:

self.stack.append(token)

i = Interpreter()

i.interpret(’5 display’)

i.interpret(’3 2 + display’)

i.interpret(’3 2 + 4 - display’)

1http://en.wikipedia.org/wiki/Reverse_Polish_notation

CMSC 143 (Fall 2011): Lab 12 1 of 2

http://en.wikipedia.org/wiki/Reverse_Polish_notation

A Postfix Robot Programming Language

Remember information flows through your programming using the stack, the commands read parameters
from the stack and push their output onto the stack. Your language should have the following functionality:

1. A display command for printing out values.

2. The ability to perform simple mathematical expressions (+, -, /, *, **).

3. Simple forward, backward, turnRight, turnLeft, beep commands.

4. Commands for reading the sensors (e.g. getLeftLight, getRightIR getBattery).

5. Commands for taking and showing pictures.

6. A read command that reads a list of commands from a file (it’s name is specified as a parameter).

7. Lines starting with the # character should be treated as comments and ignored.

8. EXTRA: You might extend your language with pop, dup, swap commands that remove the top item
on the stack, duplicate the top item on the stack, and swap the top two items on the stack, respectively.

9. EXTRA: The ability to store numbers in variables; for this a dictionary would be useful.

An Example Postfix-Python Program

beep for 1 second at 440 Hz

1 440 beep

beep both an A and an E for 0.5 seconds

0.5 440 2 * 650 beep2

print out the current left light value

getLeftLight display

take and show a picture

takePicture showPicture

go forward for half a second and full power

1 0.5 forward

create a variable named power with the value 0.5

0.5 power store

go backward at power for 1 second

power 1 backward

Learning Objectives

◦ Read from Files ◦ Use Dictionaries ◦ Create a Simple Interpreter

Deliverables

Submit two files:

1. cmsc143 lab12 LASTNAME FIRSTNAME.py – Your interpreter

2. cmsc143 lab12 LASTNAME FIRSTNAME.yp – An example program using all your language’s features.

CMSC 143 (Fall 2011): Lab 12 2 of 2

