
CMSC141: Object-Oriented Programming 

Lab 6: Objects 

due: October 26th or 27th, 2017 
 
Design, implement and share a new kind of Processing object.  
 

1. Choose one specific everyday object, preferably one you can see, to simulate in Processing. 
2. Write a blueprint of the object: describe the attributes of the object (i.e. nouns) and its methods (i.e. 

verbs, or actions). Use specific names for each method and attribute, and give a brief english language 
summary of each (see the table on page 2). The method descriptions should include any input 
parameters or output values. Each attribute should have appropriate getter/setter methods. 

3. The instructor will give you someone else’s design document. 
4. Assuming your partner’s class is complete---all methods are ready to be called—come up with a plan 

for using both your objects. Interaction between the two objects should occur outside of any class 
(e.g., in setup, draw, mousePressed). Start coding this part of the lab first. 

5. When both of you have completed your implementations, share only your class definitions (e.g. 
Ball.pde, not setup & draw), and see how your programs function together! 

Learning Objectives 
❏ Write a Java class 
❏ Design an interface 
❏ Implement a class 

Deliverables 
❏ Your program should start with a comment that includes your name, email, date, assignment 

description, collaboration statement, and reflection. 
❏ Bring a hardcopy of your program (the source code, not the graphics) to your next lab period.  
❏ Also turn-in the original textual design document. 
❏ Be prepared to run the Processing sketch and demonstrate your “Theory of the Program.” 

 

   

http://pages.cs.wisc.edu/~remzi/Naur.pdf


Example Documentation for our Ball 

Attributes 

pos: PVector  Position of the ball 

r: float  Radius of the ball 

Constructors 

Ball(pos: PVector, r:float)  Create a new ball at specified position pos with radius r. 

Ball()  Create a new ball at a random location with radius of 15. 

Methods 

move(speed: PVector)  Change the position of the ball by speed. 

display()  Display the ball as a red circle. 

bounce()  Bounce the ball off of the left, right, top and bottom edges of the window. 

getR(): float   Return the radius of the circle 

setR(r: float)  Set the radius of the circle, the size can’t be smaller than 1 

getPos(): PVector   Return the position of the ball 

setPos(p: PVector)  Sets the position of the ball to p 

getX(): float   return the x position of the ball 

getY(): float   return the y position of the ball 

setX(x: float)  set the x position of the ball, keeps the ball within the window 

setY(y: float)  set the y position of the ball, keeps the ball within the window 

 


